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Soliton Solutions of DNLS Equation Found by IST
Anew and its Verification in Marchenko Formalism

Ya-Xian Liu,1 Bai-Feng Yang,1,2 and Hao Cai1

Received November 9, 2005; accepted March 13, 2006
Published Online: July 18, 2006

A general procedure is proposed to derive the multi-soliton solutions of DNLS equation
with vanishing boundary value, and the two-soliton solutions of it is given as an example.
Furthermore, the verification of multi-soliton solutions is done through Marchenko
formalism.
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1. INTRODUCTION

Introducing a special spectral parameter κ (the reciprocal of the normal pram-
eter λ), Kaup and Newell solved the derivative nonlinear Schrödinger equation
(DNLS equation) with vanishing boundary condition through the inverse scatter-
ing transform(IST) method constructed on complex κ−plane (Kaup and Newell,
1978a,b). On the other hand, some other researchers, Wadati et al., tried to do it
on complex λ−plane (Wadati et al., 1979), and all of them gave the same single
soliton solution (Chen and Huang, 1989; Kaup and Newell, 1978c; Nakamura and
CHen, 1980; Huang and Chen, 1990; Steudel, 2003; Kawata et al., 1979). But
the explicit expressions of multi-soliton solutions are not given so far. Recently,
the perturbation theory of DNLS equation still attracts much attention (Kaup,
1990, 1991; Chen and Yang, 2002; Hao and Huang, 2005). As a result, the ex-
plicit expression of multi-soliton solutions of DNLS equation is required and the
verification of it is also needed to be done.

As is well known, the single soliton solution can be verified finally by direct
substitution into the nonlinear equations. But such a procedure is hard to be done
for multi-soliton solutions and its verification should be treated seriously. In the
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case of nonlinear Schrödinger equation(NLS), its Jost solutions can be factorized
as a product of Blaschiek’s matrices in a recursive manner with the method of
Darboux transformation matrix. As a result, if the single-soliton Jost solutions
satisfy the Lax equations, the corresponding multi-soliton Jost solutions also do
it in a recursive manner. And then the multi-soliton solutions certainly satisfy
NLS equation by compatibility condition. On the other hand, it is uncertain that
the Jost solutions derived from the equations of Cauchy integral satisfy the Lax
equations because the pole values of it must be thought over. This problem does not
exist in the Jost solutions derived from inverse scattering transform in Marchenko
equation.

In the note, we obtain the exact multi-soliton solutions of DNLS equation
through the standard inverse scattering transform method with introducing a factor
λ−1 to ensure vanishing contribution of integral along the large circle in complex
λ-plane as radius tending to infinite. And the explicit expression of two-soliton
solutions is given as an example. In order to verify the multi-soliton solutions, the
Jost solutions with same asymptotic behaviors are taken together to compose
the 2 × 2 matrix N (x, z; λ) that satisfies Marchenko equation. Then we can show
the Jost solutions derived from inverse scattering transform in Marchenko formal-
ism indeed satisfy both Lax equations. Finally, the multi-soliton solutions derived
here satisfy the DNLS equation according to the compatibility condition actually.

2. DNLS EQUATION

The derivative nonlinear Schrödinger equation (DNLS) is given by

iut + uxx + i(|u|2u)x = 0, (1)

with vanishing boundary condition u → 0 , as x → ±∞ and its Lax pairs are
given by

L = λ(−iλσ3 + U ) (2)

M = −i2λ4σ3 + 2λ3U − iλ2U 2σ3 − λ(−U 3 + iUxσ3)

and its Lax equations are

∂xψ = Lψ, ∂tψ = Mψ (3)

From the first Lax equation, the free Jost solution E(x, λ) is derived as

E(x, λ) = e−iλ2xσ3 as x −→ ∞ (4)

The Jost solutions are proposed to

�(x, λ) ≡ (
ψ̃(x, λ), ψ(x, λ)

) → E(x, λ), as x → ∞ (5)
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and

�(x, λ) ≡ (
φ(x, λ), φ̃(x, λ)

) → E(x, λ), as x → −∞ (6)

Differing from the usual nonlinear Schrödinger (NLS) equation, the Jost
solutions in the limit |λ| → ∞ do not tend to zero. So it is necessary to introduce
an additional factor λ−1 to construct the equations of inverse scattering transform
by an integral of Cauchy’s contour. This factor ensures vanishing contributions of
the integral along the big circle in complex λ−plane as the radius tends to infinity.

3. PROPERTIES OF THE JOST SOLUTIONS

Since the first Lax equation of NLS is similar to that of DNLS, there are some
same properties of the Jost solutions

ψ̃(x, λ) = −iσ2ψ(x, λ̄), φ̃(x, λ) = iσ1φ(x, λ) (7)

ã(λ̄) = a(λ), b̃(λ) = −b(λ) (8)

where ψ(x, λ), φ(x, λ) and a(λ) are analytic in the domain Imλ2 > 0, namely, in
the I and III quadrants of complex λ− plane. Moreover, since

L(x,−λ) = σ3L(x, λ)σ3, E(x,−λ) = σ3E(x, λ)σ3 (9)

we have the reduction transformation properties

ψ̃(x,−λ) = σ3ψ̃(x, λ), ψ(x,−λ) = −σ3ψ(x, λ) (10)

φ(x,−λ) = σ3φ(x, λ), φ̃(x,−λ) = −σ3φ(x, λ) (11)

ã(−λ) = a(λ), b̃(−λ) = −b(λ) (12)

From (7),

a(−λn) = a(λn). (13)

if λn is a zero of a(λ), −λn is also a zero of a(λ).
According to the Asymptotic behaviors in the limit |λ| → ∞,we obtain

ū = −i lim
|λ|→∞

λψ̃2(x, λ)

ψ̃1(x, λ)
(14)

4. EQUATIONS OF INVERSE SCATTERING TRANSFORM

Defining

	(x, λ) =
⎧
⎨

⎩

1
a(λ)φ(x, λ), as λ in I, III quadrants

ψ̃(x, λ), as λ in II, IV quadrants
(15)
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we have

λ−1 {	(x, λ) − E·1(x, λ)} eiλ2x = 1

2π

∫

�

dλ′ 1

(λ′ − λ)λ′ {	(x, λ′) − E·1(x, λ′)}eiλ′2x

(16)
by introducing factor λ−1 to ensure vanishing contribution of the integral along
the big arc as |λ| → ∞. In the case of reflectionless we obtain

ψ̃(x, λ) =
(

1
0

)
e−iλ2x + λ{R(x, λ)}e−iλ2x (17)

where

R(x, λ) = −
∑

n

1

λ − λn

1

λn

cnψ(x, λn)eiλ2
nx, cn = bn

ȧ(λn)
(18)

Combining the terms of λn and −λn by reduction transformation properties of
(12) and (13), we have

ψ̃1(x, λ) = e−iλ2x + λ

N∑

n=1

2λ

λ2 − λ2
n

1

λn

cnψ1(x, λn)eiλ2
nxe−iλ2x (19)

ψ̃2(x, λ) = λ

N∑

n=1

2λn

λ2 − λ2
n

1

λn

cnψ2(x, λn)eiλ2
nxe−iλ2x (20)

Substituting them into (14) yields

ū = V

W
(21)

where

W = 1 −
N∑

n=1

2

λn

cnψ1(x, λn)eiλ2
nx, V = −

N∑

n=1

2cnψ2(x, λn)eiλ2
nx (22)

5. N- SOLITON SOLUTIONS

Introducing some matrixes

gn =
√

2cnf0(λn), �jn =
√

2cnψj (λn) (23)

Bnm = gn

pm(
p2

n − p2
m

)gm, B ′
nm = gn

p2
n

pm

(
p2

n − p2
m

)gm (24)

pn = iλn (25)
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where (23) and (25) are 1 × N matrixes, (24) are N × M matrixes, and f0(λ) =
eiλ2x .
Then (21) can be expressed with the form of matrix.

u2 = −2
�2g

T

1 − �1P −1gT
= −2

(det (I + R′) − det (I + R)) det (I + R′′)
det (I + R) det (I + R′′′)

(26)

where

R = B B
′T

, R′ = R + gTg, (27)

R′′ = BB ′T, R′′′ = R′′ + P −1BgTg (28)

and

det (I + R) = det (I + R′′′), det (I + R) = det (I + R′′) (29)

With some algebra formulas, we can obtain the N-soliton solutions of DNLS
equation. As an example, we give the exact expression of the two-soliton solutions:

det(I + R) = 1 + |f1|4 λ1

λ1

∣∣
∣∣∣
λ2

1 − λ
2
2

λ2
1 − λ2

2

∣∣
∣∣∣

2

+ |f2|4 λ2

λ2

∣∣
∣∣∣
λ2

2 − λ
2
1

λ2
2 − λ2

1

∣∣
∣∣∣

2

+
(

f 2
2 f

2
1
λ2

λ1
+ f 2

1 f
2
2
λ1

λ2

) (
λ2

1 − λ
2
1

)(
λ

2
2 − λ2

2

)

(
λ2

1 − λ2
2

)(
λ

2
2 − λ

2
1

)

+ |f1|4|f2|4 λ1λ2

λ1 λ2
(30)

and

det (I + R′) − det (I + R) = −i
λ2

2 − λ
2
2

λ2

λ
2
1λ

2
2

λ2
1λ

2
2

f 2
2

{
λ2

2 − λ
2
1

λ2
2 − λ2

1

+ λ
2
2 − λ2

1

λ
2
2 − λ

2
1

|f1|4 λ1

λ1

}

+ (the other term of exchanging one with two)

(31)

Substituting (30) and (31) into (26), we obtain the exact two-soliton solutions.
In Fig. 1, the three-dimensional figure of the propagation of two-soliton

solutions is shown, where λ1 = cos(0.9π/4) + i sin(0.9π/4) and λ1 =
cos(1.1π/4) + i sin(1.1π/4) .The two waves transmit respectively except for
encounter that accords with the character of the propagation of soliton. When
they encounter, the intermediate region between two peaks rapidly grows, which
presents the procedure of nonlinear collision.
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Fig. 1. 3D Plot of two-solition solutions under the vanishing condition.

6. MARCHENKO EQUATION FOR THE DNLS EQUATION

For the multi-soliton solutions, it is necessary to prove their correctness. We
can not verify them with the method of direct substitution. Then we give the
theoretic certification in Marchenko formulas. Introduce integral representation of
Jost solutions

�(x, λ) = E(x, λ) +
∫

x

dz N (x, z; λ)E(z, λ) (32)

where E(x, λ) = e−iλ2xσ3 . N (x, z; λ) is a 2 × 2 matrix, and can be expressed as

N (x, z; λ) = λ2Nd (x, z) + λNnd (x, z) (33)

where the indexes d and nd mean the diagonal and off-diagonal parts respectively.
And by (7)

N11(x, y) = N22(x, y), N21(x, y) = −N12(x, y) (34)

Based on the work of by Kaup and Newell (Kaup and Newell, 1978b), the
Marchenko integral equations are

N12(x, y)+f (x + y)+
∫ ∞

x

dz N11(x, z)f ′(z + y)=0 (35)

N11(x, y) −
∫ ∞

x

dz N12(x, z)f (z + y) = 0 (36)

where

f (x + y) = i

N∑

n=1

1

λn

bn

ȧ(λn)
eiλ2

n(x+y), f ′(x + y) = i

N∑

n=1

λn

bn

ȧ(λn)
eiλ2

n(x+y)

(37)
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7. DEMONSTRATION OF THE FIRST ONE OF THE LAX EQUATION

Noticing f (x + y)y = f (x + y)x = −if ′(x + y), we give the derivative of
(35) with respect to x and y respectively,

N12x(x, y) − (i + N11(x, x))f ′(x + y) +
∫ ∞

x

dz N11x(x, z)f ′(z + y) = 0 (38)

N12y(x, y) − if ′(x + y)+
∫ ∞

x

dz N11(x, z)f ′(z + y)y=0 (39)

and considering
∫ ∞

x

dz N11(x, z)f ′(z + y)y = −N11(x, x)f ′(x + y) −
∫ ∞

x

dz N11z(x, z)f ′(z + y)

(40)

N22y(x, y) = N21(x, x)f (x + y) +
∫ ∞

x

dz N21z(x, z)f (z + y) (41)

we obtain

N12x(x, y) − N12y(x, y) − iu(x)N22y(x, y) = 0 (42)

So in the case of reflectionless, (42) can be written as the form of integral in a
system of linear algebraic equation,

N12x(x, y) − N12y(x, y)−iu(x)N22y(x, y)

+
∫ ∞

x

dz{N12x(x, z)−N12z(x, z)−iu(x)N22z(x, z)}=0 (43)

then the first Lax equation is verified in the case of reflectionless.

8. DEMONSTRATION OF THE SECOND ONE OF THE LAX EQUATION

Taken account of the time-dependence, E(x, λ) becomes

E(x, t, λ) = e−iλ2(x+2λ2t)σ3 (44)

The integral representation is now

�(x, t, λ) = E(x, t, λ) +
∫

x

dz(λ2Nd (x, z) + λNnd (x, z, t))E(z, t, λ) (45)

The time derivative of (45) is

∂t�(x, t, λ) = −i2λ4σ3E(x, t, λ)

+ λ2
∫

x

dz
{
Nd

t (x, z, t)E(z, t, λ) + Nd (x, z, t)2iσ3E
′′(z, t, λ)

}

+ λ

∫

x

dz
{
Nnd

t (x, z, t)E(z, t, λ) + Nnd (x, z, t)2iσ3E
′′(z, t, λ)

}
(46)
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and

M̂�(x, t, λ) = M̂E(x, t, λ) + M̂

∫ ∞

x

dz N (x, z, t ; λ)E(z, t, λ) (47)

After a series of integration by parts for (46) and (47),then comparing with the
two sides of the equation, the terms of λ

∫
x
dz E(z, λ) and λ2

∫
x
dz E(z, λ) are

N11t (x, z, t) + (|u|2u − iux)N21(x, z) + 2iu(x)N21z(x, z) − |u|2N11z(x, z) = 0

(48)

N12t (x, y, t) − 4iN12yy(x, y, t) + 2u(x)N22yy(x, y, t)

− |u|2N12y(x, y, t) + i(|u|2u(x) + iu(x)x)N22y(x, y, t) = 0 (49)

Considering the time-dependence, cn is simply replaced by

cn → cn(0)e4iλ4
nt (50)

then from (35) we can obtain

�(x, y) +
∫ ∞

x

dz	(x, z)f ′(z + y) = 0, 	(x, y) −
∫ ∞

x

dz�(x, z)f (z + y) = 0

(51)
where

�(x, y) = N12t (x, y, t) − 4iN12yy(x, y, t) + 2u(x)N22yy(x, y, t)

−|u|2N12y(x, y, t) + i(|u|2u(x) + iu(x)x)N22y(x, y, t) (52)

	(x, y) = N11t (x, z, t) + (|u|2u − iux)N21(x, z)

+ 2iu(x)N21z(x, z) − |u|2N11z(x, z) (53)

In the case of reflectionless, N (x, y) can be expressed as

N (x, y) =

⎛

⎜
⎝

∑

n

N11(x, λn)eiλ2
ny

∑

n

N12(x, λn)e−iλ
2
ny

∑

n

N21(x, λn)eiλ2
ny −∑

n

N22(x, λn)e−iλ
2
ny

⎞

⎟
⎠ (54)

�(x, y) =
∑

n

�(x, λn)e−iλ
2
ny, 	(x, y) =

∑

n

	(x, λn)eiλ2
ny (55)

Substituting (55) into (51), and integrating them, we can obtain

∑

n

	(x, λn)eiλ2
ny −

∑

nm

�(x, λm)
1

λn

cn

i
(
λ2

n − λ
2
m

)e
−i

(
λ

2
m−λ2

n

)
x
eiλ2

ny = 0 (56)
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and
∑

n

�(x, λn)e−iλ
2
ny +

∑

nm

	(x, λm)λn

cn

−i
(
λ

2
n − λ2

m

)
x

e
−i

(
λ

2
n−λ2

m

)
x
e−iλ

2
ny = 0

(57)
Substituting (57) into (56), we can obtain

∑

n

	(x, λn)eiλ2
ny +

∑

nm

	(x, λn)AmnBmne
iλ2

ny = 0 (58)

where

Amn = 1

λn

cn

i
(
λ2

n − λ
2
m

) , Bmn = λn

cn

i
(
λ2

n − λ
2
m

) (59)

then (57) becomes
∑

m,n

	(x, λn)eiλ2
ny(δmn + AB) �= 0 (60)

So

	(x, λn) = 0 (61)

as the same procedure,we obtain

�(x, λn) = 0 (62)

The second Lax equation is proved.

9. CONCLUSION

In this note, a general method is provided to obtain the exact multi-soliton
solutions of DNLS with vanishing boundary condition. At the same time, we
demonstrate the Jost solutions obtained by inverse scattering transform in reflec-
tionless case indeed satisfy the two Lax equations and the multi-soliton solutions
obtained by the IST method satisfy the DNLS equation by the compatibility con-
dition actually.
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